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1. INTRODUCTION

The classic problem in signal processing is to identify a low strength signal in a noisy
background. Even more difficult problems are to identify several signals in the noisy back-
ground, to determine the direction of the sources, and to track one or more of these multiple
sources. In the next section we will give an overview of the techniques that we have devel-
oped for nonlinear signal identification. In the third section we will provide the details. In
the fourth section we will give an overview of our nonlinear tracking methods, and in the
fifth section we will give the details of the design of an array suitable for use with broadband
signals. In the sixth section we will present the details of our nonlinear tracking algorithm
for following a maneuvering vehicle.

Classical, linear theory has becii used cxlensively in solving these problems. However,
if the signals have a broad frequency spectrum with no readily identifiable characteristics,
standard spectral methods are inadequate. In Phase I, we have built upon some results of
nonlinear dynamics to develop nonlinear algorithms to solve these problems, namely:

e classify sources of multiple signals in a noisy environment;
o determine the source direction if the receiver is an array;

¢ perform tracking of a maneuvering vehicle.

Imagine there are several sources of signals present in a noisy environment, and it is
desired to classify the sources. Or suppose that you have been busy listening in a noisy
environment and a new signal source suddenly appears which you wish to quickly identify.
These are classic problems for which we developed a new generalized method in our Phase-I
effort. Our method, which is based upon our research in nonlinear dynamics, specifically
addresses signals that have a broad frequency spectrum with no easily identifiable features
so that classical identification methods are ineffective. Our method is, to the best of our
knowledge, completely new, and is based upon standard results in nonlinear dynamics and
classical probability theory. It is particulariy well suited to signals associated with low-
dimensional chaotic dynamical systems, but it is by no means restricted to them.

We now givc a brief overview of the procedures and assumptions involved in performing
the classification. We assume that samples of signals have been previously acquired and are
available in a library. The signal representing the noise background may be obtained while
one is listening for other, more interesting signals, and it is treated the same as any other
signal. Certain geometric structures {probability densities and their characteristic functions)
associated with each signal then are constructed and a comparison is made with the same
structure created from the newly received signal. The way in which this comparison is made
can have a significant effect on performance. So far we have relied on either a standard x?
statistic for comparing two probability densities, or upon a simpler square of the difference
of the densities summed over all signal strengths.

The geometric structures are defined so that the structure from the sum of two signals
factorizes into the product of structures, one from each signal. We then compare with the




corresponding product of structures from our iibrary and decide whether we have a correct
identification. This factorization property is crucial as it permits a large library of signals to
be compared with the incoming signal in essentially real time. The result is a determination
that the received signal has a component that was made by a source of a unique type
such as, for example, a particular helicopter model or a particular submarine model. For
spectrally wide-band chaotic signals it is usually not possible to make such an identification
by comparing either signals or their spectra.

One can imagine using this kind of processing in different ways. One scenario involves
listening at a particular site with a nearly stationary (in time) noise background. Suddenly
a new noise is present, and it is desired to identify the source. In this case we need only
identify the new signal as we can include the observed background noise in our library. The
searching of the library is then very rapid and an identification may be quickly performed.
In other situations one may be confronted with a new environment and wish to identify all
of the sources present.

In some situations the receiver is an array, and the signals from the individual elements
can be separately phased (independent time lags) before combining the signals. In this situ-
ation it is possible to identify the direction of a particular source by varying the phase of the
array. Because the signal is broadband. we are not looking for a null to determine the direc-
tion, but rather changes in the constructed geometric structures as the phases of the array
elements are changed. To the best of our knowledge, this is a new concept. The densities con-
structed from noise-like signals were observed to have relatively little structure as the phase
1s changed, but the densities {rom other signals showed significant variation as a function of
the array phase. [t is also possible to monitor changes in the distance of the source as the
amplitude of the received signal varies. A new algorithm that we have developed determines
the velocity of the source by a nonlinear “doppler shift” calculation. This determination is
sensitive to the background noise; consequently, its practical implementation will have to be
delayed until the nonlinear signal-processing algorithms are refined.

In conjunction with the development of our nonlinear identification algorithms, we have
also derived a nonlinear tracking algorithm. It also turns out to be suitable for tracking
maneuvering vehicles in a conventional signal-processing environment.

In Phase I we performed the following tasks:

e We constructed twenty signals, including several types of broadband noise, outputs of
chaotic electronic circuits, and samples of time series generated by systems of ordinary
differential equations with chaotic solutions. Samples of the signals were placed in a
“library.” Additional signals from the same systems were generated and constitute
the “test” set. The signals in the test set were not identical to any in the library,
but they were from the same dynamical systems. In addition, we forced some of
the noise signals to have the same spectrum as some of the chaotic signals. This
was accomplished by Fourier transforming the signal and randomizing the phases of
the Fourier components and then inverting the Fourier transform. This insures that
standard spectral-identification methods could not separate the sources.




Two signals {rom the test set were added together with randomly selected amplitudes
to form a simulated received signal. We then attempted to identify both the amplitudes
and the type of signals by comparing certain geometric structures constructed from the
signal and from the library. Provided the amplitudes of the test signals were not too
different, we were able to identify both signals in all cases. The range of amplitudes
permitted depended upon the similarity of the signals, with a factor of roughly ten
being a limit for the modest amount of processing that we did. We believe that as the
algorithms are refined, substantial improvements in the range of amplitudes for which
signals can be scparated will be possible.

e We also combined three test signals together for a few examples and were able to
classity the components.

e We next considered an example where the receiver was a multi-component array. The
incoming signals from the receivers in the array were added with a phase difference
which was chosen to select a particular direction. Because the signals are broadband,
there is no “null” as a function of the relative phases of the array elements. However,
the constructed densities have a strong dependence on the phase, which can therefore
serve both as a direction identifier and as an additional classification mechanism. In
examples of arrays that were typical of ones that could be deployed in the ocean,
we were able to determine the direction and identify the source of signals that were
20db weaker than other signals with similar spectral characteristics with only a modest
amount of processing.

The techniques that we developed are new, and there are a wide variety of possible
refinements. Because the processing is nonlinear, there are more variations available than
for conventional linear signal processing, even when we restrict the investigation to the types
of algorithms that we propose. There are no real differences in the principles involved in
the various implementations, but there are many different ways to optimize the probability
of correct classification. Unfortunately it is very difficult to prove general theorems about
what is optimum for nonlinear systems. Thus we expect that, for the next few years at least,
the non-linear signal processing community will have to rely to a large extent on empirical
evidence.

2. OVERVIEW OF OUR SIGNAL CLASSIFICATION METHOD

We now discuss some of the important variables and some of the freedom available in
the details of our algorithins. Usually our signal is a time series from a single detector.
In nonlinear dynamics we are often interested in quantities that might have been observed
if more detectors were used. In order to get some additional information, we construct
additional surrogate signals. There is a certain arbitrariness in this procedure which leads to
a wealth of simple variations in processing algorithms. For example, the most common way
of constructing a second signal is to start with the original signal, S(¢), and construct another
signal, Si(¢) = S(t + T) where T is a time delay. The two signals, S(¢) and S,(t) can be
used to construct a two-dimensional phase space. Other signals can be constructed by using
other time lags, such as Sy(t) = S(t + 2T). For dynamical systems with low dimensional



attractors, it is possible to construct a phase space that has geometric properties related to
the actual phase-space geometry. This technique of phase-space reconstruction has been used
extensively to obtain information about dynamical systems. It underlies our procedures, but
we have found that it can be extended in several ways for purposes of signal recognition.

In most nonlinear dynamics applications, one considers a fixed time delay, T, and for
those applications nothing is gained by varying the time delay, except perhaps one choice
works slightly better than another. For our applications it is useful to consider several
time delays simultancously. Of course, this is not a new concept in linear signal processing
since the auto-correlation function considers all time delays. However, this idea has not
previously been used for examining phase-space density functions. We found that making
separate comparisons for several different time lags improved the decision-making algorithm.
As one example. an alternative way of constructing a second signal is to consider the signal
Seum(t) = S{t)+ S(t+T). Although this is an apparently trivial change, it turns out to be a
crucial ingredient when the receiver is an array, and it provides a significant improvement in
our classification algorithm for single receivers. The density constructed from such a signal
combination is a slice through a two-dimensional density constructed from Sy and S, but
it usually has more structure than the density constructed from 5; alone and is hence more
useful.

The point of the above two paragraphs is that there are a variety of simple modifications
that can be made to our basic method that will improve the results. As we have indicated
above, there are several variations in the numbers and types of phase-space densities that
can be used for identification. The principal ones that we have vested are as follows:

¢ Two-dimensional phase space with a single, fixed delay time;

e Two-dimensional phase space with one or two additional delay times;

e One-dimensional phase space using S,,,.(t) and many delay times;

Three-dimensional sampled phase space with a fixed delay time.

Most of our tests have been performed using a two-dimensional phase space with a fixed
delay time, T, and it is within that framework that we declare Phase I to be a success.
In order to improve the discrimination, we first considered a second time lag and that was
sufficient to remove some accidental ambiguities. It is possible, and in principle desirable, to
work in a three-dimensional or higher phase space. Unfortunately, the computational time
increases dramatically. Rather than reconstruct the entire three-dimensional density. it is
possible to sample randomly the density (actually the Fourier transform of the density) at
many points. This allows one to enjoy many of the benefits of a {ull reconstruction without
the full computational effort. We performed some limited testing using this procedure in
Phase [ and it appears to be successful. If several signals are present, this technique might
provide a better signal to noise ratio for the same computational effort. We have not yet made
comparisons with the use of two-dimensional densities in terms of efficiency and accuracy.




We also did some calculations with one-dimensional densities using the signal S,um(t) =
S(t) + S(t + T) described above. The disadvantages of a density constructed from just S(¢)
is that it is difficult to obtain good discrimination because of the relatively few features
available for discrimination, and that drawback is related to the relatively little information
contained in that density. However. adding a time-lagged signal increases the structure
and considering many different time lags greatly increases the identification capability. A
significant advantagc of one-dimensional densities is that relatively little computer resources
are required. We have tested this concept on a few signals. At the very least it is successful
enough to serve as a quick “rejection filter,” thus reducing the number of cases requiring
more extensive examination.

As we mentioned above. these combinations and their generalizations also play an 1m-
portant role when the receiver is an array. In the plane-waves approximation, the best one
can hope to do is to translate the phase information into a bearing angle. The problem
is thus to design an array whose beam pattern has little or no frequency dependence. In
particular, we must make sure that the main lobe width. peak response. sidelobe level, and
distance between the main lobe and the sidelobe plateau (which takes the place, in our
approach, of the grating sidelobes which appear generically in the case of single frequency
arrays) all remain constant across the design frequency band. To do this. we use the Poisson
summation formula and the method of stationary phase to relate beam-pattern properties
to array characteristics. Using this relation, we then translate all the listed beam-pattern
requirements into practical requirements on sensor location and array amplitude shading.
We end up with a beamforming approach that is significantly more efficient than a classical
uniformly spaced array. Specifically. while uniform spacing produces an array in which the
total number of elements would be proportional to the ratio of the highest to lowest design
frequencies, the method we have used allows one to achieve all the beam-pattern objectives
with a total number of elements that grows like the logarithm of the ratio of highest to lowest
frequencies.

In summary, in Phase [ we have developed new, nonlinear algorithms for detecting one
or more spectrally broadband signals in a noisy background. The primary goal of verifying
that signals can be identified/classified by the proposed technique was achieved. In addition,
the fact that there are several variations of constructing densities that have been successful
in identification seem to enhance greatly the ideas’ usefulness. The algorithms use a new
and innovative approach that can be used in near real time. We have successfully used the
algorithms to classify sources and, with an array of receivers, we can identify the direction
as well as decrease the contribution of other sources.

3. SIGNAL CLASSIFICATION

The crucial ingredients for a correct classification of signals are their probability densi-
ties. First, we explain two ways of constructing the densities, and then we will show how
to identify the components of a signal made up of several pieces. Examples will be given
showing how the method works. and some important refinements will be presented.

The first step is to normalize all signals. The mean is removed and the root-mean-
squared signal is normalized to unity. i i essential to have a uniformn normaiization since
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we have no a priori knowledge of the relative amplitudes of the components of a signal. The
normalization and mean may be useful themselves, such as for determining the change in
distance of a moving vehicle. but we don’t use them directly for most signal identification.

The simplest density is just a histogram of the amplitude of the incoming signal. If S(¢)
is sampled and has the values 51,55, S5, .. for a total of .V values. we just count the number
of times 5 is between v and x + dv and call that NV - p(2)dz. Formally,

1 T
ple) = 71211\ 7—/ Sz — S(t))dt (1)
> 0

where 8(r) is the delta function. This density usually doesn’t have enough structure to be
a useful identifier, although with a modification to be described below it can be a useful
tool. A second density. now two dimensional, can be constructed by introducing a second
coordinate S(¢t + 1"). Then

-
plr,y) = lim / S(a — S(t)5(y— S(t+T))dt. (2)
0

T—oo

The practical application of these formulae requires replacing the delta function by a
function of finite width. We have chosen to use

. 1 :L_ (3)

Other substitutions are possible.

The interpretation of p(x,y) was discussed in the previous section. A third coordinate
can be introduced and a three-dimensional density defined. The procedure could. in principle,
be continued to whatever dimension one wished. There are several reasons for truncating at
a low dimension:

e Computational requirements become prohibitive in high dimensions (greater than three)

o The length of the signal may not be long enough to justify many dimensions, i.e..
regions of phase space will be empty or inadequately sampled.

e For low-dimensional dynamical systems the higher dimensional probability densities
are certainties in terms of lower dimensional ones.

e A density in a low dimension is a projection of a density in a higher dimension. The low-
dimensional density may contain sufficient features to serve as a classifier for practical
purposes.

[t is possible to sample a high dimension without computing the entire density. This
procedure will be discussed below. For dynamical systems with low-dimensional attractors,




strange or otherwise. there are theorems that relate the number of time lags needed to the
dimensionality of the system. Consequently, if only low-dimensional dynamical systems were
the sources of the signal, we need consider ouly lower dimensional probability distributions.
Noise tends to be very ligh dimensional, but it usually has little structure anyway so not
much is lost by projecting it onto a lower dimensional space.

We have elected to do our calculations mostly ina two dimensional space. As we have
noted, the various time lags are parameters of the density functions. To work with only one
time lag, 7', is equivalent to considering the auto-correlation function

C(I)y =< S(t)st+1) > (-+)

at only one value of 7. Of course one value of C(T') provides very little useful information.
For example. the determination of the spectrum requires a wide range of values of T' (in prin-
ciple all 7" values. in practice a limited range). Thus even when we restrict our calculations
to two dimensions we can construct a continuun of densities depending on T, In practice

we have sampled a range of 17 values.

The next step in the procedure is to understand the relationship between a density of a
signal and the density ¢f its components. To this end we detine the characteristic function
of the density which is just the Fourier transform,

w1
—

R .
plk) = /c‘]‘*/)(r)(l.z' = Jll—l.]l,T /O e~ gy (.

This has the property that if S(¢) = S((t) + S2(¢) and
LT,
pilk) = -7-/ e* gt (6)
0

(k)= = k521 g 7
p2(k) T./o (7)
then p(k) = py(k)po(k). This is a well-known property of characteristic functions [5] and

just requires that 5, and S, are generated by independent. stationary processes.

We emphasize that this relationship is crucial to the possibility of signal classification if
multiple signals are present. If three signals are present the result is

Alk) = pu(k)pa(k)dal k). (8)

This expression would he correct for general signals S; and Sz, but since we normalize
signals, the amplitude must enter the relationship between the ps in Eq. 8. Suppose




(8) = aSi(t) + 35:(1) (9)

oy

where all signals have zero mean and are properly normalized. Then o® + 3% = 1. and the

relationship is actvally

pUAY = prlak)pa{dk) . (10)

Since a and F aren’t known. this requives that they be found as part of the procedure.
The relationship is the same in higher dimensions except that & is now a vector.

The density can be constructed either by constructing p(a) or p(k) from the above
definitions. Tt is usually more efficient to calculate pld) on a mesh and then interpolare
to get praki, rather than calculate piak) directly. Note that p{e) will always vanish for r

outside some region. stice signals can't have arbitrarily large amplitudes.

Once the appropriate densities are constructed, the next step is to test hypotheses about
which signals make up S0 The procedure that we have used thus far to provide a fignre of

merit is to test the quantity
Frror = Z | plhy = pulak)pa(3h) |7 (1l)

or the corresponding Fourier transform as a function of x for all signals. Sy and 5. for a
range of values of a. If one of the components is known then one need only search for a
second signal. This is the case if a new signal suddenly appears. The background signal
up to that time is S; and the new signal is S,. Since we have been listening to S5;. we
can construct the densities for it and only candidates for S; need to be tested. This also
illustrates that one of the signals. S in this case. can be arbitrary noise. If there are three
signals present. all unknown. one has to test many more hypotheses.

We have found that a special class of one-dimensional densities, to be described below,
can be used as a rejection tilter. This is an important point since they require very little

computational resources.

We now present examples to illustrate the method. In Figures 1 and 2, several examples
of signals are shown. Two of the signals are from electronic circuits (provided by NRL)
and the rest are siyuthetic signals generated from ordinary differential equations with chaotic
attractors. Fignres 3 and 4 show the power spectrum of the same signals.

The basic idea of the scheme we propose for classifying signals is to construct probability
densities for signals of interest and to make comparisons by pattern matching with the
corresponding density for a signal that one wishes to identify. There are an infinite number
of possible densities. but it is sufficient to compare only a few. Before proceeding to the
technical details we give a pictorial example. In Figure 1 there are three density plots. The
first, (a), is the density constructed from a signal to be classified and the other two. (b)




and (c¢), are proposed candidates taken from a library. In this case it is easy to see that (c)
matches (a) and that (b) does not. A numerical calculation of the differences confirms this.
TUEs particular density has a simple interpretation. 1t is the probability that a measurement
of asignal, S(t), at time, ¢, and a subsequent measurement a time T later will have the values
v and y respectively. Or more properly, p(e, y)dedy is the probability for the signal S(t) to
be in the range v to @ + dr and the signal S({ +T') to be in the range y toy +dy . p(x.y)
1s the vertical axis labeled density. The densities will, of course, be different for different
values of T The second moment of the probability density. p(x.y). is the autocorrelation
function. e, (1) =< ay >.

Such a simple comparison does not always provide a conclusive test, particularly when
multiple signals and noise are present. In that case one can compare the patterns at several
different values of T or construct other related densities. There are many {infinite) densitios
that can be constructed and it must be determined which are more useful for a particnlar

application.

This example illustrates some of the flexibilivy available in our algorithms for signal
discrimination. and it also serves to illustrate some of the problems that need to be solved in
order to develop a uselul system. There is flexibility in the choice of dimension of probability
density, there is the question of selection of the time lag, 7. and whether to use many different
values of T and. if so. how many. There is the possibility of using an arrav of receivers to
enhance recognition. Since the sources have a broad frequency spectrum. the question arises
as to the most effective way of deploying an arvay and what are the trade-offs. One also needs
an antomated decision making process for comparing densities and some way to measure
confidence.  All of the suggestions for enhancing performance were tested successfully in
Phase 1L although no information about optimizing performance was obtained.

I order to test our method when multiple signals are present, we form combinations of

two signals to give a third.

S{t) = aP(t) + 0Q(1) (12)

The signals P and @ are to be identificd as well as their relative amplitudes. Since we
measure S{t) we know its level so that we know the value of the sum of the squares of @ and
b. For the particular example that we show here, ¢ = 0.48 and b =0.87.

We have been using a \* statistic as a figure of merit, which is a slight modification of
Eq. 11 [53] and the appropriate function of the densities of the signals is compared. In this
case we constructed a two-dimensional density by using a signal and a time-lagged signal for
the two components.

The criterion that we use is exact in the limit of an infinitely long signal. but in the
present case a relatively short signal was used. This means that even when the correct signals
with the correct amplitudes are compared there will be some residual statistical error. In
the lower right graph of Figure 6. \? is shown versus the relative strength parameter. a.
There are two curves that are nearly identical and a third onc that has a larger \*. One of




the two lower curves corresponds to the exact comparison and gives us an estimate of the
statistical uncertainty that places a lower limit on x2. The second curve was computed by
taking a different sample of signals 4 and 6 and comparing various combinations of them
with the densities of the original signal. We see that the value of o is clearly about 0.5,
which is correct.

The residual error is due to the inherent lack of statistics. The upper curve corresponds
to the hypothesis that one of the signals was correct and the other incorrect. Note that
even in this case our algorithi correctly identifies the amount of the signal that was the
right candidate. We then considered two different signals, neither of which corresponded
to the original choice. namely signals 1 plus 5 (sce lower left of Figure 6). In this case x*
was relatively flat and well above the levels shown on the graph, thus affirming that neither
signal was present in the signal to be identified.

The amount of data used is of course important. The computational effort is propor-
tional to the length of the time the signal is observed, and there is the logistic problem of
not being able to collect an infinite amount of data in a finite time. For the examples shown,
we sampled about ten times per oscillation and included a total of 10,000 points. For typical
machinery oscillations of 1,000 rpim. this is about a minute’s worth of data.

Depending upon the types of signals of interest, one may get by with less total samples.
We tried many different combinations of signals. even including noise in the signal to be
identified, and all of our results were comparable to the example presented above. We were
even able to recognize that a signal was made up of two similar signals so that if there are
two sources of the same signal we could recognize that fact.

It is important to be able to identify a weak signal combined with a strong signal.
The limitations on this are not known at present and will undoubtedly be dependent upon
refinements of the algorithm. Qualitatively we have no problem separating signals with a
ratio of energies of ten to one. Sometimes we can resolve power levels of a hundred to one.
and we expect further improvement will be possible.

We have done some limited testing with a signal made up of three signals. In the first
example one signal was broad-band noise (signal 7) and the two other were chaotic signals.
The energy in each signal was the same. The correct combination was easily selected out.
We then tried a combination with the energies in the ratio of 9 to 4 to 1, with the 9 being
the broad-band noise. There did not scem to be any problem identifying the two signals
even in the presence of noise. There was one example of an alternative signal giving as good
a statistic as onc of the correct signals. In order to resolve this discrepancy we performed
a separc  test which completely resolved the uncertainty. It is encouraging that almost
all incorrect combinations were easily rejected in the two-dimensional phase space, as this
means that only a few candidates might have to be further processed, as we did in the above
example in order to get better rejection of incorrect hypotheses.

In order to give the reader a visual impression of the densities we illustrate with a
combination of two signals, such that the weak signal has 40% of the amplitude of the first
signal. We then consider three candidate signals for the weak signal. Figure 7a shows the
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density p(x, y) of the incoming composite signal with ¢ = S(¢t) and y = S(t+4). The density
obtained by taking the convolution of the two correct individual signal densities is shown in
Figure Tb. Note that density in Figure 7h is smoother than Figure 7a. This is due to the
limited statistics. If the signals were infinitely long, the two densities would be iaentical.
Incorrect hypotheses for the weak signal combined with a correct guess for the strong signal
are shown in Figures T and 7d. Note that visually we can distinguish them, and a nun.erical
test alsu concludes which is the correct density.

We now turn to a promising method of performing some classification via one-dimensional
densities. Define a new signal. R(t) = S(¢) + S(t + T). Construct the density associated
with this signal.

T,
pa:T) = —[1—/ S(x — R(t))dt. (13)
o Jo

As usual we normalize R(t) such that rms(R?) = 1. The factor involved in the normal-
ization is just the correlation function, that is, rms(R?) = 2(1 + C'(T')) before normalizing
I but after normalizing S. The density p(; T) has considerable structure and the structure
changes as T changes. In Figure 8. we present examples for one particular signal. The
density is shown on vertical axis and the signal strength, 2, is on the horizontal axis. The
value of T is shown at the top of each graph. For reference, a typical oscillation time scale
is around ten units. The densities for a sccond signal are shown in Figure 9. Note that they
are quite distinct, particularly if several different T values are examined. The density with
T = 0 corresponds to the usual density. Note that it is relatively featureless. One way of
constructing noise with a frequency spectrum comparable to a signal is to Fourier transform
the signal and make the phases random with each one independent of the others. Then
Fourier transform back and the resulting signal will have the same spectrum. The result
of such an operation is shown in Figure 10 a-f. Notice that there is no structure and no
dependence on T. Figure 10g is for 5(t) = cos(t). There is no dependence of p(x) on T for

a simple sinusoidal signal.

We have done some limited testing of comparing densities in one dimension as a function
of T'. It is certainly much faster than computing in two dimensions and serves as an effective
rejection filter. Properly used, it might be possible to do all or nearly all calculations with
one-dimensional densities. One can extend the idea and define

Q(t) = S(1) + St + T) + S(t +27T). (14)

The density associated with Q(t) has yet a dilferent structure. One could also use a different
T, say Ty instead of 2T. All of these concepts need to be examined. We now know that they
all work to some extent and the goal is to refine and optimize their use.

In order to illustrate the possibility of discrimination with one-dimensional densities, we
chose two signals and added them together with equal amplitudes. In Figure 11 the solid
line is the density of the summed signal. The dashed line is the fit obtained as usual by
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using p(k) = py(k)pa(k). The curves would exactly coincide if the length of the signal were
sufficiently long. The difference in the two curves provides a measure of what is the “best”
that one can do if one tries candidate signals to make up the received signal. In this case the
most stringent test was to try a signal with the same power spectrum as one of the original
signals, but with randomized Fourier phases so that it is noise. The result is shown in Figure
12. Although the fit looks good. they are to be compared with those in Figure 11. There is
clearly a difference for all values of 7" and one could casily infer the correct signal even with
this one-dimensional construction.

The one-dimensional densities are just simple projections of two-dimensional or higher
densities. However there are alternative projections that are also simple. For instance. for
the Fourier transform in two dimensions, p(k), one can fix the magnitude of & and vary the
polar angle. We have done some limited testing of this idea and the ability to classify seemed
comparable to the one-dimensional densities described immediately above. The reason for
considering thesc alternatives is that it is desirable to use a projection that has considerable
structure, and the region around & = 0 is generally pretty structureless. Ordinary projections
have to use that region whereas this projection is specifically devised to avoid it. It also has
the feature that it is simple to calculate and the interpolations required because of the
unknown signal strength are also simple.

It is possible to extend the definition comparable to R(t) or Q(t) to two dimensions.
We have done that in a limited way and the comparisons scem to work better; however. not
much testing has yet been done.

An important new tool that we have been developing is the use of an array of receivers.
We use the array first to get the direction ol a particular source and then to analyze the
source. We made a model of an array typical of a possible underwater array. The particular
test we ran was for one hundred elements, spaced a few meters apart. The details of designing
an appropriate array are presented in the next section.

Both equal spacing and logarithmic spacing were tried. Two sources a long distance
away with an angle of 453° separating them were simulated. In one example we made source
A ten times as strong as B (20dh separation). We were easily able to identify B with a single
two-dimensional comparison or a few one-dimensional comparisons. We could not do this
without the array. In order to demonstrate the above comments we show the results with
and without an array. Without an array it is just the addition of two signals with one signal
being ten times larger in amplitude. In Figure 13a we show the density the sum of the two
signals,

In Figure 13b we show the density obtained by the usual multiplication of py and pa. In
Figure 13¢ we show an alternative candidate for §y. Clearly it is difficult for the eye to sce
the difference between Figure 13h and Figure 13c. It is also numerically difficult if only one
time lag is used. In Figure 13d we show the density for an alternative signal for Sa. This
time we can clearly see the difference. In Figure 14 we show the results of using an array.
This time we are clearly able to identily correctly the weak signal. Note that since the signal
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is broadband, we can’t use the array to select a particular frequency in a given direction as
one might do with harmonic signals. This is a very important result since we don’t have to
search for pairs of signals, etc. but only need to match a single signal, as the other received
signals were greatly reduced in strength.

4. OVERVIEW OF BROAD BAND ACOUSTIC ARRAY DESIGN

We studied the problem of localizing and tracking the source of a received underwater
acoustic signal, given that the latter is more complex than a simple C\V tone, and that it
has propagated from source to receiver through a non-linear medium. The approach we had
to take is a dual one: it depends on how well one can represent the detected signal. Indeed,
if the signal produced by the source is truly chaotic, i.e. if it is has chaotic dynamics, then,
while we have an approach that can identify the dynamical system in question, one cannot
hope to retrieve the actual time-series of the signal with any kind of accuracy. On the other
hand, if the signal produced by the source is merely complex, i.e. if it is more complicated
than a (linearly-produced) time-harmonic tone yet has Hamiltonian dynamics or at least
non-chaotic ones, then one can indeed hope to identify a template time-series associated
to it, perhaps parametrized by some of the state variables, then estimate these parameters
along with the other state variables associated to the source.

In either case, the signal produced by the source gets convolved by the Green’s function
of the medium before being measured by the receivers. Because the source is moving in time,
and because the dependence of the Green's function on range is very much non-linear, the
received signal is quite complex in both cases. Yet one would expect that if this complexity
is well-understood and optimally used. one could infer from it the location of the source as
a function of time. In turn, it is natural to expect that this localization and tracking should
help improve the detection and estimation of the various source parameters.

In the non-chaotic case, one can try to model the template associated to the source
signal as accurately as possible: indeed, it will depend on the source coordinates (which vary
with time), on its (time-varying) velocity, and, possibly, on some other (non-time-varying)
parameters that can distinguish one underwater source from another. Once the dynamics
of these state variables are modeled by mathematical equations (with deterministic and
stochastic components), and once the dependence of the received signal on these variables is
also modeled mathematically (i.e., essentially, once the medium is satisfactorily represented
and its Green's function computed), we reduce the problem to a classical optimal-filtering
problem, albeit a non-linear one. The approach we take in this case is to derive and solve
the equations for the conditional density function. This is the probability density function
of the state variables describing the problem, conditioned on the signal received. Computing
this p.d.f. is essentially the equivalent of implementing an infinite-dimensional Kalman filter
to provide the best estimate of the state variables in this non-linear problem.

In the truly chaotic case, one cannot expect to single out an actual signal template. Yet
the approach we took to the identification problem does associate a characteristic density
function to our source, one shared by all the diverging actual signals that could be produced
by this single dynamical system that has been identified. As this density function scales
linearly with amplitude, we can also ecstimate the instantaneous (real) amplitude of our
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signal. In order to develop a tracking method in this case, the challenge is two-fold: use
plane-waves (rather than the detailed Green’s function) to make the best use of what little
phase information one has, then try to refine this angle-tracking by making optimal use of
the sequence of estimates of the instantancous real amplitude information we obtain using
the density function that characterized the signal. Our tracking approach in the chaotic
situation is thus somewhat weaker than in the previous case: instead of making optimal use
of the complete complex Green’s function, we first account for all phase information using a
plain-wave approximation, then account for the varying amplitude using the real propagation
loss function (the maguitude of the Green’s function).

In the next secction, we describe our filtering approach in the chaotic case in more
detail, and present simulated results. We then describe our approach in the non-chaotic-yet-
nonlinear case and present simulated results in that case.

5. BROAD BAND ARRAYS

As explained in the previous section, we first seek to extract all phase information from
our signal before processing it through our dynamical system identifier. followed by our
instantancous amplitude estimator. The resulting amplitude estimate is then used along
with the phase information as the latest data for our tracking algorithm. We now describe
the individual pieces of this method.

In the plane-waves approximation, the hest we can hope to do is to trauslate the phase
information into a bearing angle. The problem is thus to design an array whose beam
pattern has little or no frequency dependence. In particular, we must make sure that the
main lobe width, side lobe level, and distance between the main lobe and the side lobe plateau
(which takes the place, in our approach, of the grating sidelobes which appear generically
in the case of single frequency arrays), as well as the peak response, all remain constant
across the design {requency band. To do this, we use the Poisson summation formula and
the method of stationary phase to relate beam-pattern properties to array characteristics.
Using this relation, we then translate all the listed beam-pattern requirements into practical
requirements on hydrophone location and array amplitude shading. This approach is similar
to the one proposed by Ishimaruin [3] [4], and differs in that, while Ishimaru et al only verified
that a particular shading function gives a good sidclobe behavior, we use the approach
to systematically derive the array requirements in order to achieve our global broadband
objectives. Our generalization of his method to the systematic broadband case here follows
the same line as our generalization of his method to time-domain pulse trains ([2]).

Let us begin with some design considerations. The problem with using a classical uni-
form element spacing comes from the two lacts that
e in order to reduce the side lobe levels across the band, the spacing would have to be
proportional to the wavelength corresponding to the highest design frequency, while

e in order to keep the width of the main lobe constant over the design band, the length
of the array would have to be proportional to the wavelength corresponding to the
lowest design frequency.
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In other words, with uniform spacing, the total nuraber of elements would be proportional
to the ratio of highest to lowest design frequencies. With our design. it turns out that the
number of elements will grow like the logarithm of this ratio, hence should prove substantially
more eflicient.

The main difficulty in using unequal spacings is that the beam pattern function for such
an array is unlikely to have a closed form expression. This makes it difficult to relate array
beam pattern properties to array specifications (i.e. spacing and amplitude shading). That
is where the Peisson summation formula comes in.

Suppose we have N + | eclements, to be placed along the z-axis at positions z, (0 <
n < V), and to be shaded by the (frequency-dependent) weights w,(A), A a wavelength
within the band of interest. As a function R of @ = sin (angle of the plane wave arrival)
—sin (array beam angle), the response of the array will be

IV
R(O'1 ’\) = Z ".L’ll(/\)(ﬁ?xiar"/'\ (16)

n=0

There are many ways of extending r, and w,(A) to functions of a real argument n such that

e both functions are continuous at all the integers.
e 2 is twice differentiable and strictly increasing on the interval [0, V],
e w vanishes for n not in J—c. .V + [ (where € is a small positive number fixed once and

for all).

Choose such extensions z(n), w(n.\). We can then use the Poisson summation formula on

R to get
Rlad) = >

m=—nc Y7

w(n, ,\)ezxi”(n)/‘\e_him" dn (17)

[ee]
>

For simplicity, let us assume that the element spacings are increasing (with n). Mathemat-
ically, we are assuming that the derivative &’ is an increasing function, i.e. that the second
derivative 2”(n) > 0 for n in the interval [0, V]. Following [3] [4], let us use the method of
stationary phase to study the expression (17). This method predicts that, asymptotically,
(i.e. for A relatively small). the behavior of R for a close to 0 will be adequately described
by that term in the right hand side of (17) which corresponds to m = 0 (i.e. the mainlobe
is described by the m = 0-term), while the m** grating sidelobe will be described by the

behavior of the integrals near that n = n,, which gives a stationary phase in the integrand,

i.e. for which \
dn) = (13)
a

Since " was assumed positive, 2/ is strictly increasing, so (18) will have at most one solution
for cach m.




Let us begin by examining the mainlobe-to-sidelobe separation problem. What is the
smallest positive value of « for which (18) has a solution. i.e. where does the first sidelobe
appear? For a sufficiently near 0, the right hand side of (18) is very large, outside the finite
range 2'([0, V]) of &’. As a increases, the right hand side will decrease accordingly. The first
solution thus occurs when a = mA/a’( V). Hence, at the lowest design frequency, where we

can and will make the reasonable assumption that the whole array is used, the first (m = 1)
sidelobe appears when a = ag = Ag/2’(n), where Ay is the wavelength corresponding to the
lower design frequency, and 2’/(.V) is, by hypothesis, the largest element spacing. In order
to meet our requircments, we would like to keep this main-to-side-lobe separation constant
across the design band. The obstacle is that. if A < Ay, (13) will have solutions with a < ay.
The only way to remove this hurdle is to make sure that the corresponding shading weight
equals zero. for all these potential solutions. So we have to set

w(n,A) = Oforalln > :L"_l(;r'(.\"),\/,\o) (19)

and keep it positive otherwise. This equation has a nice interpretation: it says that at
any given frequency in the design band, clements spaced farther than 2/(.V)/Ag wavelengths
apart should not be used.

Let us now examine the sidelobe level problem. As in [1], (17) implies that the level of
the m* grating sidelobe is approximately

l/ LU Ti(ar(n}/N=mn (177.'2 (20)
which, by stationary phase, is itsell approximately equal to Aw(n,, A)?/(az"(n,,)), with
nm = z'"'(mA/a) as in (18). That is, the level of the m!* sidelobe is approximately

l w(n,, A)?
__J:I N __,(Tli ('31)
in z"(nm)

As we determined in the previous paragraph. the first (and largest) sidelobe occurs at a =
AMa'(N) > ap = Xo/2'(N), ie. for a in the interval [Ao/z'(N) , 2], for which n; must
correspondingly lie in the interval [2/7'(1/2), 2"~ (2'(n)A/Xo)]. For this sidelobe level to be
independent of A, we have to require that

win,\)? = constantml((n)) if2 7' (\/2) <n < N2 (N)A/2) (22)
a'(n

over all A in the design band.

Let us now turn to the mainlobe level problem. As in [1][3], the array response for a
near 0 is approximately given by the 0** term in (17), namely

[ e]
/ w(n, A)merA gy (23)
-0
Choosing t = z(n) as a new variable as in [2], this can be rewritten as
Lo dt
1 2riat/\ 9
w(ar™ (1), A)e — (24)
/u #'(z71(1))
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where we have made the reasonable assumption that the array extends from 0 = z(0) to
z(N) = Ly. There are several ways to make sure that this integral is independent of A, at
least for a small. One simple way is to write L(A) for the length of that part of the array
used at wavelengtii .\, i.e. to assume that w(n, A) vanishes exactly when n > 27'(L(})), so
that the integral can be rewritten as

LY o(e=t(t), A) ..
/ ( (l )7 )62,'.10!/.\ dt (25)
o a'(x=H1))
then to assumec that the integrand is as spatially uniform as possible. i.e. depends only on
A. We thus assume that w(a='(t),N) /(7' (1)) = f(A), and there remains to determine

the functions f and L. We do this by verilying when, with these functions. the integral is
indeed independent of A:

~L{\) . 2riat/A \ €2xiaL(.\)/.\ —1 ()6
| e = o 2)
which is indeed independent of A only if L(A) = LgA/Ao (we have already assumed that

the entire length of the array Lg is used at the lowest design wavelength Ap). and if f(X) =
constant’/A. We summarize these conclusions:
a'(n)

win,\) = con.stan[,’—T— ifn < 271 (Lo o), (27)

/

and should vanish otherwise.

What should the overall design be in light of all this? The first halves of conditions (19)
and (27) specify the support of the shading function w. To reconcile them. we must succeed
in construction z(n) such that

A - [/ 2R
e HLy=) = 2 7H(@(NV)) (28)
’\U ’\0
Using the new variable M = LgA/Ao, this cquation becomes z='(\) = z'~'(2'(N)\ Lo).

If we now write v for x71(\) (so that A becomes z(v)) then apply 2’ to both sides of the
equation, we obtain

dx z'(N) 5
— = x 29
dl/ LQ t ( )

a differential equation which is solved by z(v) = Ae®V)/Lo_in which A is a constant that

can be determined by the condition x(N) = Ly. Putting it all together, The solution is
£'(N)

ta = Ly B (30)

This equation must hold at least for all n (= z~!'(LoA/Ag)) that are within the interval
[M, Ao] where ) is the wavelength corresponding to the highest design frequency. Also note
for future use that (30) implies that, over its range of validity. (2N (d)) = Lod/z'(N).




With formula (30) for ., condition (22) governing the sidelobe levels becomes

w(n.\)? = constant 1/ Ly (31)
for all n in the range 27" (A\/2) < n < &'"H(&'(NV)A/Xo) and all \ in [A1, Ag]. It is important
to note that in order to validate the use we just made of formula (30), we must require
that that formula hold for all n in the interval [2'71(A/2), 2/ (2'(.V)A/\o)] over all X in the
design band. Since 2’ is increasing, this means that (30) must hold for all n in the interval
[2"1(A1/2), N]. As to our amplitude shading function w, we may as well normalize it by
setting the constant in (31) cqual to Ly, so that w(n,A) = 1 over the interval above.

To specify w over the entire domain of interest. we turn to the last condition unaccounted

for yet, namely the second half of (27), namely that w(n,\) = constant’z'(n)/Aifn <
271 (LoA/\o). Unfortunately, to maintain a low sidelobe level, we have already adopted the
condition w(n,A) = I for 27{A/2) < n < 27}(LyA/Ao). So we will simply choose the

constant in (27) in such as way as to make w continuous at the transition point n = z71(A/2),
i.e. we set constant’ = 2, and set

2 - /\
w(n,A) = —\.7;'(71) forn < 2 1(;) (32)
To obtain a complete design, we still need to specily , for all n = 1..., V. So far we

know that (30) must hold for all n in the intersection I of the intervals [271(Lo\1/Ag), V]
and [2'71(\;/2), N]. Therefore we still need to determine 2/(V) and the values of x, for n
outside I.

Assuming, without loss of generality, that z/(N) > Ao/2 (i.e. that the largest hy-
drophone spacing is at least as big as half the largest wavelength in the problem). our range
Lis in fact the interval I = [2'7(\,/2), N]. Thus, (30) specifies the element positions from
the widest-spaced down to the ones spaced at half the shortest design wavelength. The re-
maining elements (whose positions are yet to be specified) must therefore be spaced at least
as closely as half the wavelength at any frequency in the design band. For efficiency, it is
only natural to minimize the number of additional elements available to fill out the array,
and therefore require that they be spaced no closer than the half-minimum-wavelength. So
we set

AL
Lforn < |

Lo A, Ly . (N
2 =0 (N2

= N -
N=om 8 72

In order that @ remain continuous, we must finally reconcile this last equation with equation
(30) at the intersection point of their ranges. This reduces to imposing the final additional

condition \ [ \ -
1 . 0 17'(1 ") Al 0 .
—_— ‘/\l -— y [ . 4
2 ( MRRG WE )> 2 P(N) (34)

) (33)

I, = n

Putting all these requirements together, we end up with the following equations for
the element positions and the shading cocflicients (here we call d the largest spacing in the
array):

d > \o/2 (35)
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dN

Ly = ———m———— 36
° T T+ log(?d/)\l) (36)
L -
r. = n\/2orn < N — —lulog(?.d/,\l ) (37)
G
Ty = LoemWmmMlo o n > N — L—ZU log(2d/Ay) (38)
a
) \ Lo .
we(A) = 22'(n)/Aforn < N — ~ log(2d/ M) (39)
¢
-y o Ly
wa(A) = 1for N — " log(2d/A) < n < N - i log(Ao/A) (40)
¢ a
w,(A) = 0otherwise. (41)

Practically, this implies that the filtering we apply to the Fourier coefficients 7#,(f) at

frequency f of the signal r, at the nt" hydrophone is

S (Alf) + J Bal))ialfernP50/C (42)

7

with 2, as above, A (f) = M/C it n < N — Llog(2d/A), Au(f) = (2d/C)eln= Vo
if N — Llog(2d/\;) < N = Llog(2df/C), and 0 otherwise, while By(f) = 1if ¥ —
%1 log(2df/C) < n < N — LI} fog(Aof/C'), and 0 otherwise, and 3 is the sine of the bearing
angle being scanned.

As the simulations that we have implemented show, this method should prove very
useful in concentrating the energy of a signal spread over a wide band and thus enhancing
its detectability. Indeed, the method singles out the optimal set of time delays (defined by
the angle of peak gain) to use in adding up coherently the signals arriving at the different
elements of our array.

We have previously shown the benelits of an array in signal classification (see figures
13 and 14). In the next example we show how one can determine the direction of a broad
band signal, even when a stronger signal is present. In Figure 15 we show an example with
two sources, one at —43° and one at +30°. The array does an excellent job of locating the
direction. Knowledge of the direction is important for optimum utilization of the array for
classifying signals. Indeed, the method singles out the optimal set of time delays (defined by
the angle of peak gain) to use in adding up coherently the signals arriving at the different
elements of our array.

6. NONLINEAR TRACKING

In this case, we are assuming that a “parametrized” signal template time-series has been
identified. By “parametrized,” we mean that this template, which we have as a model for
the signal that we are trying to detect and localize in the reccived time series, may depend
on several parameters such as target aspect, speed, range, etc. We also assume that, while
the dynamics of this template signal arc not necessarily linear, they are not chaotic: in other
words, we can expect to estimate in a robust fashion the values of the parameters on which
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it depends, and, indeed, locate the exact version of our signal within the reccived time series.
For convenience, let us group all our parameters into a “state” vector X, and assume that
we are looking for the signal S(¢;.X') within the received time series r(t).

So far, we have not accounted for the (highly non-linear) propagation effects through
the ocean lens. For simplicity, we will assume for now that the parameter vector X consists
only of the coordinates of the source producing the time series. Qur problemn in this case is
to look for each of the n signals

St X) = / G(X, to: Xy t) S(to: X) dto (43)

within the corresponding signal r,(¢) received at the n" hydrophone, where G is the Green's
function for the medium, and X, represents the coordinates of the n'" array element. Rather
than try to detect S (and estimate its parameters X') based on a single “look.” an approach
whose success is assured only when one assumes an unrealistically high signal-to-noise ratio,
we propose to combine several looks together in order to make our detection. In short, we
set out to “track” S (and X) in order to determine if it is indeed there, i.e. for what value
of X | if any, can we identify our template within the received time series.

The optimal filtering solution to this problem is described by the formalisin of the Zakai
equation ([6]). The solution to this equation is essentially the (infinite-dimensional) non-
linear equivalent of the linear Kalman filter. To set up thie Zakai equation, and then try to find
1ts solution, one starts by describing the expected time evolution of the vector one is trying
to estimate, .X in our case. One then describes the dependence of the data received, the r,’s
in our case, on this state vector - that is achicved by our equation (43). once we can compute
the medium’s Green’s function. For simplicity, we shall assume very simple dynamics for
our variables, and proceed to write down directly the solution to the Zakai equation: first,
we change the assumption about X a little, and assume that our state vector consists of the
coordinates of the source as well as its velocity vector, i.e. X = (21, 2(2) 203 (1) (2 13))
then we assume that the dynamics of the velocity vector have a deterministic part that
assumes that the velocity is piecewise constant, and a stochastic part that assumes that
the discrete velocity changes occur at Poisson-distributed times with rate u. This measn
that our source moves in straight line segments, changing its course at a sequence of times
{t1,t9,t5...} such that the quantities ¢, ¢y — ¢, t5 — ¢, ... are Poisson distributed with mean
1/u, and such that the new velocities at cach course change are distributed according to a
pre-specified density function, call it g. The formalism of the Zakai equation allows us to
determine the conditional density function p(¢,Y given rn(7) for all 7 < t), the function of
(t,Y") which describes the likelihood that X at time ¢ be close to the value Y, given all the
past received observations r,(7).

Under these assumptions, we have obtained a recursive algorithm for updating p as the
data is received. Indeed, if the noisc in the received signal is 0-mean additive Gaussina noise
with r.nes. level o, p can be computed using

4 Su(s.r—={t=s ) +2un(s) v S, (s.o~(t—s)v.w)+ulds
ot 2,0) = pllo,x — (t— ly)vsv)e 5 [ T Sulsr=(t=s)u0) 42un(5) vF S (5.2 (t=s)v.w)+uld (44)
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-’r-,u/ [/p(to,:v—(t—to)v,U')g(v—v')(lv']c—z"o
to
(45)
where u,(s) = fos ra(7)d7 is the sum of all data received at the n't element up to time s.

We set out to study the moments of p and their evolution in time in order to determine
the kind of localization one can expect to achieve efficiently. The preliminary simulations we
had conducted started by assuming a medium with given visco-elastic propagation properties,
then computing the associated Green's function for a pure tone, thus enabling us to compute
the templates S, for any array contiguration.

The first new aspect of the probleni we decided to study was the robustness of this ap-
proach when one does not necessarily know the exact parameters governing the propagation
in the medium at hand. Indeed. one cannot expect to know the compressional and shear
velocity profiles with all their fluctuations througliout the medium, nor can one expect to
compute an exact Green’s function, even if the propagation parameters were known exactly.
In particular, starting with a uniform p over a realistic domain for X, the first question is
to determine how soou the variance of p. i.e. the mean square uncertainty in the estimate
of X, would converge to an acceptably small value. We started by doing this for a pure
tone (the case of a linear signal). in a two-layer medium allowing only compressional wave
propagation. The discouraging result is that the method fails if the relative discrepancy
between the modeled velocity and the actual propagation speed is greater than 0.45%. if the
relative difference between the modeled and actual layer depth is greater than .17, or if the
relative error in the density of the half-infinite layer is greater than 10%. Not only does the
second moment fail to converge, but the algorithim actually ends up “zeroing™ p because the
increasingly negative exponents in (4-1) impose a uniform rapid decay rate on the density
function. In essence, the “ambiguity function” for this particular approach is too narrowly
supported, and this model is too sensitive to randomness in the medium.

The conclusion is that for this approach to work, one must incorporate into one’s vector
of “state variables” the parameters that describe the medium. and one must incorporate the
effect of their fluctuations on the signal as it propagates from the source to the receivers.
This is considerably more complicated than what we set out to study: such an endeavor
would lie beyond the scope of this effort.
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Figure 1. Time traces of four of the signals used in this demonstration. Signal 3 is random
gaussian noise with the same spectrum as one of the other signals.
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Figure 2. Time traces of four of the signals used in this demonstration. Signal T is random
gaussian noise with the same spectrum as one of the other signals.
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Figure 3. The corresponding power spectra for the signals shown in Figure 1.
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Figure 4. The corresponding power spectra for the signals shown in Figure 2.
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Figure 5. The density, p(z,y), for a particular signal is shown in Figure 5. The density from
another sample of the signal is shown in 5¢, and the density from a different signal

is shown in 5b. These latter two densities are examples of proposed candidates taken
from a library of possible densities.
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Figure 6. (a) is the power spectrum of the sign»l shown in 6b; (b) is the sum of signals 4 + 6
with the relative strength parameters a and b given in the text; (c) Different pair of signals
that was being compared with signals 4 + 6; (d) x? is a figure of merit for how good the fit
is, smaller x? being better. The horizontal axis is a relative amount of the two signals being
combined. The two curves that nearly touch are two samples of signals 4 + 6. The upper
curve is for signal 6 + another unshown signal, and the x? for signals 1 4+ 5 would be off the

graph.
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density density

Figure 7. Figure 7a is the density, p(z,y), for § = .37S; +.63S; with S} and S, being two of the
signals described above. Figure 7b is the density constructed from j(k) = p1(.37x)p2(.63%)
and would be identical to Figure 7a for an infinitely long time series. Figures 7c and 7d are
constructed similarly to Figure 7b, but the signal used for S is incorrect.
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Figure 8. One-dimensional density for one of the signals with Seum(t) = S(t) + S(t + T) and
various time lags, T. The vertical axis is the density and the horizontal axis is the signal
amplitude.
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Figure 9. Same as Figure 8 for another signal.
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Figure 10. The signal has the same spectrum as the signal in Figure 9, but the Fourier phases were
randomized to produce a noise signal. The single figure on the last row is for S(t) = cos(t).
The densities for cos(t) are independent of the time lag, T. The other densities have very
little dependence on T.
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Figure 13. The signal is S(t) = S1(¢) + 105,(t) and Figure 13a shows the density for S. Figure
13b is the density obtained from p k= j; %) P2 k. To obtain Figure 13c, we construct

a trial § from a signal other than S, and then Fourier transform it. Figure 13d is similar
except that a signal other than S; is used. We see that with a signal this weak we can not
identify it with a simple receiver and a single time lag, although the strong signal is readily

identifiable.
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Figure 14. Two signals were directed at an array with an angle of 45° between them. Signal 1
had an amplitude 10 times signal 2, and the array had 100 elements. The array was pointed
at the weak signal. The two-dimensional density of the signal is shown in Figure 14b. Two
sample hypotheses are shown in Figures 2 and 3. These two signals happen to have identical
power spectra. Clearly Figure 14c can be easily selected. Without the array and with only
one time lag used, we could not have identified the correct component.
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Figure 15. Two signals were simulated, one at -45° and one at +30° with respect to the array
orientation. The phase of the array was varied and the return is plotted versus the sin of
the direction angle. The source directions are clearly picked out.
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